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SUMMARY

A step-by-step numerical procedure based on & conformal-mapping
theory is presented for the design of a cascade of airfoils with a
prescribed dimensionless~veloclty distribution in incompressible
potential flow. The numerical procedure Includes a set of tables to
serve ag a guide in computation. A mmerical example is also
presented in order to illustrete specific solutions to some of the
more difficult problems arising in the design of a cascade by this
method.

The conjugate harmonle function was evaluated by use of the
method cutllined by Naiman. Two separate calculations were made: one
used 360 equally spaced values of the circle angle 6, and the
other -used 90 equally spaced values of 6. The 90-point method did
not insure sufficient accuracy for the example used. The acouracy,
however, depends on the design conditions prescribed and, consequently,
it cannot be inferred that the 90-point method will give Inaccurate
results in all cases.

INTRODUCTION

Several exact solutions to the problem of obtaining an alrfoil
cascade in incompressible potential flow with a prescribed velocity
distribution on an airfoll in the cascade have been obtelned by the
method of conformal transformation (references 1 to 3). The numerical
computations involved in conformel-mapping methods are, however,
usually quite long and complicated. A detailed mumerical proocedure
that is intended to meke the actual application of a conformal-
mapping method to cascade design more efficient in regard to time
and personnel was therefore developed at the NACA Lewls laboratory
end is presented herein.

The procedure employed requlres the specification of the
dimensionless~-velocity distribution on an airfoil 4in the cascade
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and. the values of the upstream and downstream velocity vectors of
the flow throngh the cescade. The velocity distribution specified
for an airfoil mey not be theoretically attainable; that is, the
airfoil profiles ocalculeted by use of this velocity distribution
would not have closed contours. It is possible, however, to
modify the velocity distributlion in such a menner that closed pro-
files will result.

A numerical example 1s included with the procedure in order
to 11lugtrate specific solutions to some of the more difficult
problens arising in the design of a cascade by this method. A
brief summery of the theory underlying the numerical procedure is
pregented to acqualnt the reader with the fundamental principles
employed in the solution of the problem. More detalled discussions
of the theory are presented in references 1 to 3.

SIMBOLS

The followlng symbols are used in this report:

c constant

da dimensionless spacing of alrfoils in cascade (ratio of
actual spacing to prescribed suction-surface arc length)

£(9) function added to p(6) to satisfy conditioms on h(z)

h(z) analytic function of =

k constant loca.:bing' complex sources in z-plane.

XN constant determining emplitude of sine curve
p(x,y)  barmonic function
p'(6) p(8) + £(8) corrected harmonic function

a(z) function of z defined by equation (11)

: q(lx,y) conjugate harmonic function of p(x,y)

Re "real part of"

S dimensionless airfoil arc length (ratio of actual arc leng'bh
to suction-surface arc length) .
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u(s)

vc(e)
W=priy

z=x+1y,

B(6)

corrected dimensionless airfoil arc length (ratio of
corrected arc length to prescribed suction-surface
arc length)

value of S corresponding to trailing edge of airfoil
when approached from pressure and suction surfaces,
regpectively

airfoil velocity function (equation (4))

corrected velue of u

magnitude of dimensionless velocity vector (ratio of
actual velocity to meximmm ajrfoil velocity)

magnitude of prescribed dimensionless alrfoil velocity
(ratio of actual velocity to maximm airfoil veloocity

corrected value of v

veloclty on unit clrcle

complex potentlal function

complex variable denoting circle plane
ponstant determining phaseangle of sine curve
function of € defined by equation(25)
circulation‘(positive counterclockwise)
constant deteming wave length of sine curve
velocity-potential range on alrfoil
veloolty-potential range on unit circle
included trailing-edge sngle of airfoll

complex variable denoting cascade plane (equations (23)
and (24))

circle angle (z-plane)

particular value of 6
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) velocity potential

A angle of veloeclty vector (positive clockwise)
Ak auxiliary constant defined by equation.(ze)
L stream function -

Subscripts:

a casoade plane

c circle plane

J indlcetes particular velues of N, 7, and o«
n nmean flow conditions

N leading ed.ge‘ (nose)

T trailing edge (tail)

1 upstream

2 downstrean

3

4

5 varicus constants

;

A function of (2 = x + iy) or of (x,y) expressed as a function
of © implies that the function is evaluated for z = e,

REVIEW OF BASIC THEORY

The solution to the problem of designing a cascade by the
method to be ocutlined is based on conformal-mepping teohniques
gimiler to those employed in references 1 to 3. The desired cascade
of airfoils 1s determined by forming an analytic functlion of a
complex variable, which effects & mapping of the incompressible
potential flow about a unit circle into the incompressible potential
flow about the cascade. The mapping function is such that the unit
clrcle 1s thereby transformed into the ailrfoils of the cascade.

1242
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The numerical solution involves two problems: (1) the
determination of the potential flow ebout the unit circle; and
(2) the determination of the mapping function and the alrfoil
coordinates. Before these problems can be solved, however, the
following design information mmst be specified: '

1. The magnitude of the dimensionless velocity v along an

alrfoll in the cascade, as a function of the dimensionless
airfoll arc length S

The dimensionless arc length S will be considered negative from
ST,:L to zero, and positive fram zero to ST,Z’ where Sr,l and

ST,Z represent the trailing-edge stagnation point on en airfoil

when approached from the pressure and suction surfaces, respectively.
The leading-edge stagnation points correspond to S = 0 (fig. 1).

2. The upstream and downstream dimensionless velocity vectors
of the flow through the cascade

These vectors will be designated Vy e~tAy = ) end V, e~i(y - ),

respectively, where Vl and. V, are the magnitudes of these vel-
ocities and N and A, are the directions (positive clockwise) of

the velocities as measured from a line perpendlicular to the cascade
axis (fig. 2). The four guentities Vy, Vo, A, and A, cannot

be specified independently, however, as they must satisfy the

‘continuity equation

Vy cos N =V, cos A,

Determination of Complex Potential Function in Circle Plane

In this discussion of the solution of each of the previously
mentioned problems, the complex plene containing the cascade is
designated the {= (f+ 1n) plane or cascade plane; whereas the
complex plane containing the unit circle is designated the
z = X + 1y plane or circle plane.

The complex potential function W,(z) for the flow in the

clrcle plane due to complex sources located at z = ieik (ref-
erence 4, notation modified) is given as
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8| oy - -\ ;- ok
W,(2z) = 50— [e Mlog | 2= |+ e Rlog | =t ||+
¢ an e\z + F ®\z + &
P . [ 42 ek
T %8| -2k )t (1)

It is evident that equation (1) will be specifically determined
vwhen the constants k, Vp, Ay, 4, end I' are kmown. The con-

stants Vp,A;, 4, and I can be determined directly from the pre-

gcribed veloolty distribution for the airfolls In the cascade and
the upstream and downstream velocities of the flow through the
cascade. Specifically,

A T
2z =tan1(an7\l+tan7\2> (2)
m 2
where
" 7<Mn<z
V, cos >\1 ‘ (3)-
n cos )\m
1 ST,Z
r - J" u(g) as (4)
Sp,1
where

u(s) = -~ v(S) for sT;l =830

u(s) = v(s) for 0 <S = Sr,2

1242
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(v(8) 1is the prescribed velocity as a function of S

T
d = S
(Vv sin Ay = V, sin >‘2) ()

The constent k is determined by the condition that the range
of the velocity potential (the difference between the maximm and
minimmw values of the velocity potential) on an airfoil mst equal
the range of the velocity potential on the unit circle.

The velocity potential on an airfoil ©® (S) can be determined
from the equation

S .
P, (s) j u(s) as (6)
Sp,1

The velocity-potential range A on an airfoil is then

5 = @,(Sp 5) - ®,(0) -

The velocity potential on the unit circle 3z = eie is given
by .

®,(6) = Re E«r(ewﬂ (8)

where the constant C; Iin equation (1) has been so chosen that
wc(e) 1s zero for the value of 6 ocorresponding to the trailing-

edge stagnation point on the circle. Then the velocity-potential
range on the circle Ay for a given value of k is

b = @ (O + 2x) - @ (o) (9)

where GT end. GN are the values of 6 corresponding to the
trailing- and leading-edge stagnation points on the circle,
respectively.

It is possible to find k (and also 6p and SN) by a process
of trall and error so that A = Ak'~ (See section NUMERICAL PROCEDURE. )
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Determination of Mapping Function and Alrfoll Coordinates

The general form of & mapping function that effects the desired transformation
between the !-—plane end the z-plane is glven by

— |
€ 1, € hiz k{1l . €
- 1 - 4 2 - —t —— =] i~y — k
al aek Zep T i 2t o Qu (z R e + I
R Q'-B) (-92}:) Q(z)e exp - 1ogee — (10)
T
vhere
€ spacified included tralling-edge angle of airfoils in cascade (for example, € = 0 for
cusped tells, € = x for rounded teils) .
2k _ -
‘alz) = g2 (eBK - o=BK) (11)
(32}: - 32)(22 - e-Zk)
and
n(z) = p(x,y) + ia(x,y)
18 a occmplex function, analytlo and single-valued for jz| > 1, end is such that
1im zh(z) = 0 : (12)
z—e '
It i seen from equetion (10) that the mapping function is specifically determined if the
anelybic function h(z) = p(x,y) + ia(x,y) 18 known. Actually, the process of cbtaining

the ooordinates of an alrfoll in the cescede requires only that dl/dz be known for values

8
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of z on the unit oirole. It 1s therefore sufficlent to evaluate n(el®) = p(o) + 1g(9)
in order tc accomplish this result.

BEvaluation of p(8) apd ¢q{6). - A condition that holds between the cascade pla.n.e and
the circle plane is

Pa(l) + ¥, (§) =W (2) (13)

e

vhere 9, and V¥; are ths veloolity potembial and the stream funotion, respectively, for
the flow in ‘the cascads plene. TFrom thig relation 1t 1s possible to deduoe that

VQ(G) dg
u(@) E‘__T)zﬂeie (14)
vhere ' .
' AWs(z) '
6) =» huidd * A 3ok
7vo(_ ) = Be | =2 Jz::eie | (15)
ie the veloolty on the unit circle and u(9) = u(8) as a funotion of 6,
From equetions (10) amd (14) is cbtained
vo(6) - a9(e) P—E-g%- “x -2 - £)]2 (cosh 2k~cos 26;) -
E) < .. PYq Z " x| 1O8NE
0 - X T :
e am(2zo) ™
L
It -1 /o8 GT k =1 gin qr
k - 6 T, 6 T
e cos 9 tanh <oosh - e ain 6 tan T (16)

1072 HI VOWVH
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Equation (16) cen now be solved for p(6),

v.(9) 8 -6n\|=-1
8) = 0 1 19 C 2 T T
1 €
e e - (2] - -
k + (2 2,;>’£‘°ge'\/2 (cosh 2k - cos 2 T) k
k =1 {cos O k -1 (8in 6p\
e cos 6 tanh m) ~ ¢ g8in @ tan <s T (17)

where

A
NTE)

< .1 [8in 6q
= ten (sin.h k>

All guantities in equation (17) have been previously evaluated
except u(f). The procedure for evaluating u(6) 1is as follows:
From equations (8) and (13) the-relation

9 (s) = o (6) (18)

LT

‘is obtalned for corresponding values of S and 6. By matching
these veloclty potentlaels, S ocan be obtained as a function of @
and, consequently, u(S) oan be obtained as a function of 6,
u(9$. Hence, p(f) can be evaluated from equation (17).

The necessary and sufficient condition that the condition
imposed on the function h(z) by equation (12) is satisfied is

9T+2n: 9T+21t 9T+2:r

f p(f) a9 = p(6) sin 6 30 = p(8) cos 6 39 = 0
B 6 '

T T O

Usually the values of these integrals will not be zero and,
consequently, & correction term f£(6) mst be added to p(6) such

that 1if
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p'(8) = p(6) + £(8)

- Then
6T+21r 9T+21t . 6T+2:r
f p'(8)as = f p'(0) sin 6 @6 = j p'(8) cos 6 46 = 0
6 2) .
T T O : (19)

If it is assumed that the values of the integrals involving
p(6) are not zero, but instead are

GT + 2n
Op

9T+21‘t

J‘ p(6) sin 686 = C;
O

OT + 251
J‘ p(8) cos 630 = C4
Op

3
*

1t follows that £(6) must be a function such that
o

GT + 2n
J £(6)a0 = -G,
O
OT + 2%
j £(8) sin 636 = -Cg
v eT .
GT + 21

0
&

f £(8) cos 6de 6
Oy .
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The proper choice of f£(0) fulfilling these requirements is
gomewhat arbitrary. The addition of f£(6) +o p(6) will, however,
produce & change in the prescribed airfoll velocity and the pre-~
scribed arc length on the airfoll for 6p =.6 S 6p + 2r, given by

v (6) = - u(e)eT(OV/AUO) ¢or o oS0
(20)
v'(e) = u(e)e-f(e)/Q(e) for GN‘§ 6 = 6p + 2n
and
e
5'(6) =f et (8)/a(e) Edé_elde - (21)
- Oy

These equatlions are the parametric eguations for v'(S')
where v'(S') represents the corrected airfoil velocity as a
function of corrected arc length. It is possible in meny instanoces,
however, to prescribe f£(6) in such a manner that it is zero for
values of 6 correspondiing to certain regions of the airfoil, such
as the suction surface. Over these regions, the magnitude of the
prescribed velocity as a function of € will remain unaltered.

The function q(@) czn be evaluated for various values of 8
from the equation

-]

Bp + 21
6 -6,
a(64) =f p(0) cot (—5—=) ao (22)

Orp

where 6, 1is a particular value of . 6. The function 'p(e) in
this equation is replaced by p'(8) if p(6) has been corrected.

\
Determination of airfoil coordinates. - The coordinates (£, )

of an airfoil in the cascade can be obtained in the following memmer:
The complex variable E =t in can be expressed as

t = dg‘éfgg—z-dz

1242
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The real and imaginary parts of \L;.d_'% dz for z =e® now give

the coordinates § and 17, respectively, of the airfoil. Specifi-
cally, for p(6) uncorrected,

¢ - aiﬁ; cos B (8) a0 = v—fi%)' oos.B (6) as (23)
A a)
- | i g (6) as =U"_§§_g_} sin g (0) a0 (24)
where
?(6) = ’21 +6 + erg (g—g’)z:eie

k sin 6, : cos 6,
e -1 Ty _ -1 T T .
5 I}os 6 ten™ | ———% k> - sin © tanh (cosh kj +0+ = (25)

tan GT

and where ten™t <tanh k> is in the same quadrant and has the same

slgn as Op.

If the function p(6) has been corrected, the following
equations are used in place of eguations (23) and (24):

! = %(Te_g_)oos B () ae - (26)

, . n = Z&g;%)siq B (6) a8 (27)
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Restrictions on Ailrfoll Velocity for Specified Tralling-edge Angles

It can be shown from equation (17).that the function u(0)
mest possess the following properties for ocusped-, rounded-, or
pointed~trailing-edge airfolls:

1. Cusped trailing edge: - u(Oqp)

C 1s a positive constant

"

+u(6p + 21) = C, where

2. Rounded trailing edge: u(f, )
zero is of order of one

u(6p + 21) = 0, where the

3. Pointed trailing edge (trailing-edge angle =€ ): u(GT) =
1:.(9T + 2x) = 0, where the zero is of order of ¢ /x.

As there is no convenient method of determining from u(S) +the
behavior of u(f) at 6p and 6p + 2r before extensive caloulations

have been performed, it may be necessary to modify u(6) +o fulfill
the preceding conditlons. This modification will result in a slight
change in u(S) at ST ; end ST o+ An approximation to the pre-

ceding conditions on u(e) can be made, however, by applying the
restrictions to u(S) at ST , end ST 0°

NUMERICAL PROCEDURE

The numerlcal procedure that follows wlll list the computational
gteps leading to the evaluation of the coordinates of an alrfoil in
the cascade, These steps have been included in a set of tables to
gserve as a guide in performing numerical computations. The two
problems previously mentioned ~ namely, the determination of the
complex potential funotion in the circle plene, and the determi-
nation of the mapping function and the airfoil coordinates - will
be treated separately.

Determination of Complex Potentlal Function in Circle Plane

The complex potential function W(z) (eaquation (1)) can be

determined if the constents A, V,, T', 4, and k are known.

1242
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Evalvation of Ny, Vp, T, and d. - The constants Ap,
LA

m» U, and 4 are evaluated from equations (2), (3), (4), end
(5), respectively.

Evaluation of k. - The constant k 18 evaluated by a process

of trial and error that simltaneously determines 6y and O«

The procedure required to evalnate these constants is:

1. Determine the veloclty-potential range A on an elrfoil in the
cagcade from equation (7). )

2. Assume a value of k (probably between O and 1) and determine
the suxillary constant

A = tan™l (tan A, tanh k) (28)

- ,§t'<)\k <g-

3. Determine GN and OT from the following equations.
(reference 4): .

a/ -r h k si
O + 7 = sin y (zvmd GOBsin — )\k> (29)
e nd
9T=-9N~:t-27\k (30)

4. Calculate the velocity potential range on the unit circle for
the assumed value of k from
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B, =@, (6 + 2x) - @ (6p) _ (9)
ST oo, [ (B - e <_9;v.> i
b sinh k sinh k

where

i tan Op a tan 6y .
and tan Taoh E ]kandtan : ]kareinthesamequadratrt

and bave the same sign as 6p and GN’ respectively.

5. Repeat steps (1) to (4), assuming several new values for k
until, by interpclation or plotting Ak against k, a value of

k cen be found such that A4y = A. The correct values of k, O,

and GN are those that produce this last équ.ality. (The evaluation

of k 1is given in table I.)

Determination of Mapping Function and Alrfoll Coordinates

The mapping function will be determined on the unit clrcle

if the functions p(f) and q(O) are known. The ailrfoil coordinates

can then be obtained from the mapping function.
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Determination of p(8). -

1. Evaluate the velocity on the unit circle for (6p =0 = Op + 2x)

aw,(z}| -
vc(e) = Re [ g-zz:lzzeie (15)

_ Vyd sin Ay (0) [sin (6 + Ay) - sin (6 +>\k):|
x sin A, cosh k

where Q(6) is given by

a(6) __ sinh 2k _ _sinh k cosh k
~ cosh 2k - cos 20 ginh2 k¥ gine @

(The evaluation of v,(6) is given in colwms.l to 9 in table II)

2. Evaluate u(f) in 'bhe following manner:

Plot @, () (equa'bion (6)) and evaluate P, () from
6p S 0 S O + 21, where

e
P,(6) = Re l:w(e1 )] (8)
sin Ay tan—L (810 6\ _ cog A tanhl (C08 8 )|+
sinh k m cosh k
S, 'ba.n ]
Tpd anh &

where C, 1is a constent such that q;c( ) =0 end

- % otan~t(8in 6 T
2 < (sinh %) <2

The term +tan™t :anhek is in the same quadrant and has the same sign
an

as 6. (The evaluation of ?,(6) 1is given in colmnns 10 to 24 in -
table IT.)
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Beginning at the point ST,l on the airfoil velocity-potential
curve end at the point 6p on the circle veloclty-potential ourve,
progressively match the values of @,(S) end ¢b(9) from sT,l
and 6p ‘%o ST,Z and 6 + 2w, thereby establishing a one-to-
one correspondence between the values of 6 and S, which satisfies

P,(8) =9, () (28)

As S(8) is known, u(S) is obtained as a function of 8, u(6).

3, The function p(9) is now détermined from equation (17) (The
evaluation of p(8) is given in columns 25 to 38 of table II.)

Correction of p(8) +o satisfy conditions on h(z). - Compute
(by numerical integration) the integrals

Op + 21
»(6) a8

O

9T+2n:

br p(6) sin 0 4o '

GT -

GT + 21

J‘ p(6) cos 6 ao
6p

as indicated in columms 39 to 43 in table IT.

If these integrals are not zero, form the function p'(8) = p(8) + £(6)
where p'(6) end £(6) fulfill the conditions of equation (19)
(columns 44 to 50 of table II). One expression for f£(6) is given by
£(6) =Ny sin 73 (6 + ) + Ny 8in 75 (6 + @) + Nz sin 73 (6 + ox)

(31)
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for

where J = 1,2,3 in the term that has the subscript corresponding
to J; f£(8) = 0 for all other values of §&.

The constents Nj, 74, snd o (3 = 1,2,3) are chosen so

as to fulfill the integral requirements and, if possible, restrict
the velocity change to a minimim. It seems advisable in this case
to assume various values for 73 and. @y and to evaluate N'j from
the integral requirements.

Determination of q(6). - The function q(6) 1is evaluated fran

equation (22) either by some form of numericsal integration or by the
method of Naiman (reference 6).

Determination of airfoil coordinates. =

1. Evaluate B(€) from equation (25). (The evaluation of
B(8) 1s given in. colummns 51 to 64 in table IT.)

2, Evaluate the airfoll coordinates from equations (23) and (24)

if p(f) has not been corrected, or from equations (26) amd (27) if
p(6) has been corrected. (The airfoil coordinates are evaluated in

colums 65 to 71 in table IT.)
APPLICATION OF NUMERICAL PROCEDURE
Several lmportant problems arise In the application of the
numerical procedure to the design of a particular cascade. These
problems may be listed as follows:
1. The number of values of 8 +to be chosen for computations

2. The method of selecting functions to add to p(6) in order
to satisfy conditions on h(z)

3. The method of evaluating q(8) from eguation (22)

4, The type of numerical integration to be used in evaluating
the various integrals that eppear in the procedure -
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The solutions to these problems of the mmerical technigues
to be employed to glive a certain accuracy in computations will
depend largely on the particular design being consldered. At present,
no general solutlons can be glven.

In order to illustrate particular solutions to these problems,
however, and to clarify the mumerical procedure, & cascade of air-
foils with cusped talls wes computed. It was decided in advance to
compute an airfoll in the cascade in two ways. One method was to
use 360 equally spaced values of © and the other was to use 90
equally spaced values of 6. The choice of the number of values of
€ was made in order to investigate the accuracy of using the method
of Naimen (reference 6) in computing the values of q(8) for the
problem chosen and to investigate further the influence of this
accuracy on the computed airfoil coordinates. The values of 6 had
to be equally spaced to use Neiman's method for computing q(8).
Naimen's method hed particularly been chosen for the evaluation of
a(6) because of its applicability to calculation by punch-card
mechines. In all calculations where mumerical integration wes required,
Simpson's 1/3, or parabolic method, was used because it was felt
that this method would glve sufficient accuracy for the values of 6
chosen. In all numerical work, five significant figures were used, as
it wes belleved this accuracy was sufficient for the example.

Deslgn Specifications
The velooclty on an ailrfoil in the cascade was expressed non-

dimensionally as the ratio of the actual airfoil velocity to the
maximm alrfoll velocity. The airfoll arc length was -expressed non-.

. Gimensionally as the ratio of the actual ailrfoil arc length to the

total airfoil suction-surface arc length. The velocity distribution
is shown in figure 3.

The magnitudes of the inlet and exit velocity vectors were chosen
as, respectively,

Vi = 0.68229

The anglés of the inlet and exit veloclty vectors were chosen as,
regpectively

O
Al = 30.0000

Az = 10,0000°

1242
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360-Point Airfoil Design

The firet step in the design of the 360-point airfoil in the
cascade was the celculation of the veloclity potential distribution
by numerical integration of u(S). Simpson's parabolic rule was
used teklng values of S in intervals of 0.025. The velocity
potential distributions ®u(S) and u(S) are shown plotted Jointly

in figure 4. From the velocity potential, I' was determined to be

0.28201 and ®piy, - 0.51556. The constants Am? vV, end d were

celculated from equations (2), (3), and (5), respectively. The values
obtained were as follows: A, = 20.6484°, 7V, = 0.63144, & = 1.19012.
The values of k, Ay, 6Oy, end 6, caloulated by the trial-

and.-error process indicated in the numerical procedure, were found to
be k = 0.48337, Ak = 9.66149, Oy = - 15.6038°, and Op = - 183.7190°,

respectively.

The velocity distribution vc(e) and the veloclty potentisl dis-
tribution q%(e) on the unit circle were calculated from equations
(15) and (8), respectively. These distributions are shown plotted in
figures S and 6, respectively.

The harmonic function p(8) was'calculated from equation (17)

_ and 1s shown plotted in figure 7.

In order to determine u(6), the plot of @, (S) was superimposed
upon the plot of u(S) (fig. 4). Eech value of ®,(8) (fig. 6) was
then located on the ®,(S) curve and the u(S) value was read for
the corresponding value of S. In this mamner, the value of u(S)
for a given 6, u(8), could be directly determined.

In order to determine whether or not p(6) fulfilled the con-.
ditions on h(z), the integrals -

GT + 25

f p(6) ae
)

T
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Op + 21

" (@) sin 6 a8

b

O + 2n

f p(€) cos 9 a6

9‘1‘ ‘
were numericelly Integrated and the following values were obtained:

o + 2x
' p(6) a6 = 0.38236

QT

6, + 2%

P
J p(6) sin 6 36 = - 0.09526
Op

9T+21r

p(8) cos 6d 6 = 0.26919
. GT
In order to correct for alrfoll closure, a function £(8) was
formed such that ' .
Op + 2x Op + 2x Op + 2x
J—’ p'(0) do = J‘ p'(€) 8in 6 46 = p'(6) cos 6 46 = O
6 6

e,

r T (19)

1242



NACA TN 2101 , , 23

where

p'(6) = p(8) + £(0)

Initlally, £(6) was assumed to be a function of the type
glven by equation (31). The wave lengths and zeros of the individual
8ine terms were picked somewhat arbitrarily except for the restriction
that corrections on p(0) were to occur principally on the pressure
surface. The amplitudes of the sine terms were then determined by
the similtaneous solution of the equations

PT + 2n Op + 2x
£(0) a6 = - p(6) 49 = - 0.38236
Op O
Op + 2n Op + 2x
£(8) cos 636 = - ‘Jq - p(8) cos 630 = - 0.26919

Oy Op

Op + 2n 6p + 2x .
J £(0) sin 639 = - p(€) sin 6d8 = 0.09526

GT GT

r

Several other choices for the wave lengths and zeros of the sine
terms were then mede and the amplitudes for the terms were computed.
The wave lengths and zeros that gave relatively small amplitudes for
the terms were prescribed for the f£(8) wused for the correction.
The function £(6) was defined in the interval 65 £ 0 5 6p + 2x

as follows:
£(8) =0
for

- 183.719° = 6 < - 176.281°

£(8) = - 0.21488 sin 7.5 (0 + 176.281°)
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for
- 176.281° £ 6 < - 157.5°
£(8) = - 0.21488 sin 7.5 (@ + 176.281°) + 0.008703 sin 4/3 (8 + 157.5°)
for .
- 157.8° = 6 < - 152,281°
£(6) = 0.008703 sin 4/3 (6 + 157.5%)
for

- 152.281°9 £ 9 < - 27,719

£(0) ~ 0.008703 gin 4/3 (6 + 157.5°) - 1.26792 sin 7.5 (6 + 27.719°)

for
- 27.709° S 6 < - 22.50
£(6) = ~ 1.26792 sin 7.5 (6 + 27.7189)
for
-22.5560< - 3.719
£(8) =0
for

3.719 S 0 € 176.281°

Graphically, f£(0) plotted in figure 7, consisted of the sum
of three separate sine loops. The curve 7p'(8) = p(6) + £(€) 1is
shovn plotted in figure 8.

The corrected velocity v'(6) and the corrected arc length
S'(6) were computed from equations (20) and (21), respectively. The
corrected-velocity distribution +v'(S') is shown plotted in figure 9.
This velocity distribution is the actual distribution for the computed
airfoil shape. The peak on the suction surface in the nose region is
undesirable, but steps were not taken to correct it in the present
example. .
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The velues of p'(8) at the 1° intervals were used to celculate
the conjugate haxmonic function q(6) (fig. 10) by use of the method
outlined by FNaiman {reference 6). The actual computation of this
function was performed on punch-card machines.  Interpolation vas

necessary to find the values of q(f) as the preceding method gave
values of q(8 - 1/2°).

The velues of q(O) were used to compute B(6) from
equation (25) and the coordinates of an airfoil in the cascade from
equations (26) and (27) (numerical integration). The resulting
airfoll is shown in figure 11.

90-Point Ailrfoll Design

The computations for the 90-point design remained the same
ag In the previous case, in that the chosen 80 points were taken
from the 360 points except that the function p(6) had to be
recorrected for closure. Recorrection was necessary becaunsge of
the discrepancy ln the numerical integration used, as the integration
was performed over larger intervals. The corrections for closure
were made within the 1limits chosen in the previous case. The result-
ing function p'(6) 1is shown in figure 12.

The conjugate harmonic function gq(f) was computed from
p'(6) using the 90-point method of Waimen (reference 6) and is
shovn in figure 13. The alrfoll coordinates were computed and the
resulting profile is showvn in figure 14. It is seen that this air-
foll 1s crossed near the traillng edge and remains open at the
trailing edge.

Comperison of 360~ and 90-Polnt Alrfoils

It can be seen from equations (25), (26), ard (27) that a
chenge in q(f) would introduce a change in the values of the
integrands in equations (26) and (27) eand, consequently, wonld
introduce a change in the final alxfoll coordinates. Hence, the
fact that the 90-point airfoll remained open although the conditions
for closure were satlsfled could possibly be attributed to the fact
that the 90-polnt method of Naiman did not insure sufficient accu-
racy in the values of q(8) for the present example. This pos-
8ib1ility was therefore Investigated.

In order to Inorease the accuracy of q(f), it was decided to

use the 360~-polnt method of Naimen, In order to obtain the 360 val os
of p'(8) mnecessary for the computation, parabolic interpolation was




26 NACA TN 21Q1

used. This type of interpolation was used because the integration
of p'(6) by Simpson's 1/3 rule in satisfying closure requirements
had already assumed a parabolic variation between the values of
p'(6). The interpolated values were then used to derive new values
of q(8) at the chosen 90 points, and the airfoil coordinates were
then computed. The new profile, shown in figure 15, has a closed
contour. The slight varistion between the shape of this airfoll
and the original 360-point airfoil (fig. 11) can be attributed to
the integration of equations (26) and (27) over larger intervals and
the recorrection of p(@) for closure.

An investigation was also made to determine, iIf possible, in
what manner and in what regions the change in q(8) influenced the
integrands of equations (268) and (27). In order to make this
determination, the following calculations were made and plotted:
the difference in the values of ¢q(8), as obtained from the
360-point and 90-point methods of Naiman (fig. 18); the differences
in g(6) divided by Q(6); and the differences in the integrands
of equations (26) and (27); as obtained by using the values of q(6)
derived from the two different methods. A plot of the differences
in the integrand of equation (26) was superimposed upon a plot of
the difference in q(8)/Q(6) (fig. 17). A similar plot was made for
equation (27) (fig. 18).

The differences in q(8)/Q(8) show & definite correlation to
the differences in the integrands in equations (26) and (27), as
a(8) enters into the expression for B(8) as q(6)/Q(f). It should
be noted that the changes in q(8)/Q(8) seem to have the least

influence on the integrands in the vicinity of BN (- 15.6038°),

CONCLUSIONS

It can be concluded from the comparison of the S0- and 360-point
alrfoils that the 90-point method of Naimen does not insure sufficient
accuracy in values of the conjugate function gq(6) for all cases, as
shown by the numerical exsmple presented. The accuracy of Naiman's
method will depend on the shape of the harmonic function p(6), which
in turn depends on the design conditions prescribed. As a consequence,
it is not to be inferred that Naeiman's method, applied to 90 points or
less, will not give accurate results for most cases.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronauntics,
Cleveland, Ohio, September 15, 1949..
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TAERLE I - CUTLINE FOR COMPUTATION CF k

NACA TN 2101

Definition Operation Remarks
X Assumed
1 sinh k sinh k
2| cosh k cosh k
3 tanh k tanh k
4 sindA, sin A
"5 cos Ay cos Ap
6 tan Ap tan Ap
T tan A (6) x (3)
8 Ak tan-1 (7) -LEnfE
9| sin A sin (8)
0 st (g 2 0 [T () () cn
1L} ey +Ag sin-1 (10) Zseg+n sk
12 oy (1) - (8
13 op - (12) - 2(8) - 180°
1k sin 6y sin (12)
15 cos Oy cos (12)
16 tan o tan (12)
17 sin @ sin (13)
18 cos @p cos (13)
19|  tanep tan (13)
20 | sin 6p/sinh k (17) /(1)
21 | sin Oy/sinh k (14) /(1)
22 | cos @p/cosh k (18)/(2)
23 | cos @ /cosh k (15)/(2)

273t
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TABLE I - OUTLINE FOR COMPUTATION OF k - Concluded

29

(%) [(26) - (271

Definition Operation Remarks
oL tan Op/tanh k (19)/(3)
25 tan Of/tanh k (16)/(3)
26 van-1 (517-1 eT) tan-1 (20) Express in radians
ST £ < ol (2200 ¢ n
- sinh £/~ 2
o7 san=1 (sin GN) tan™t (21) Express in radians
sinh k . _ L £ tag-l (sin QN) <z
2’ sinh ¥/ 2
28 cos ep tanh-l (22)
tanh-1 (m 5 )
29 _q (cos ©x tanh-1 (23
tanh 1 (COBE E) ( )
30 .1 (tan QT) tan~l (2k4) Express in radians; same
- tan™" \tamh E quadrant and sign as 6y
31 an 6y tan-1 (25) Express in radians; same
ten~t m) quadrant and sign as 6f
32

“Vpd
—— x(35)

33 cos &r\ | (5) [(28) - (29)]
o8 Ay [ba.nh‘l (cosh k)— |
cos Oy
tanh” (a‘agn')]
3l|- T - tan al\ _ r =
W ["aﬂ * (tanh k) wa (30
+ 6.
san-1 eN) . en—J (31) 2832
35 (32) - (33) + (3%)
36 Dy This result mst equal

P'chin for correct value
for k
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TARLE IT - OUTLINE FOR COMPUTATION OF AIRFOIL COORDINATES
Definition Qperation Remarks
8 Assign in equal intervals ep =6 Sap+ 2n
1 26 20
2 cos 26 cos (1)
3 cosh 2k - cos 28 cosh 2k - (2)
y sinh 2k sinh 2k
«e) - cosh 2k -~ cos 26
5 o+ N 0+ N
6 sin (6 + Ay) sin (5)
7| sin (6 + Ay) - sin (B + Ay (6) - sin (O + Ay)
8 Vpd sin Ay y Vol 8o dg -
m sin Ay coth k n gin Ay cosh k
[pin (8 + Ay) - sin (6n + Ay)]
9 v, (8) (8) x (4)
10 sin 6 sin 6
11 cos © cos 6
12 tan 8 tan @
13 sin 6/sinh k (20)/einh ¥
n cos 6fcosh k (11)/cosh k
15 tan 6fteanh k (12)/tanh k
16 -1 (s:ln -] ) tan-1 (13) Express in radians
tan™* \GIER & sin ©
L € tap-1 (._.__)S z
2 ginh k 2
17 -1 (cos ) ) tanh-1 (1h)
tanh  \Coam & )
18 tan-1 (tan ek) tan-1 (15) Express in radians
‘tanh 1 (ten ]
tan~: Taoh & is in
the same quadrant and
of the same sign as 6

.
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TABLE IT - OUTLIRE FOR COMPUTATION OF ATIRFOYL COORDINATES - Continuned’

Definition | Operation Remarks '
35 Gy - k - (33) - (34) |C; = log, y2(cosh 2k - cos 26;)
* B-%)<0 | D105 mamenen
37 (32) + k + (36)
38 B(6) () x (31
39 p(8) ein @ (38) x (10)
ko p(6) cos © (38) x (13)
w en +2n
fZ(e) 2 /ﬁ (38) a0
Sp 8p
4o Gp+2n Sp+an
p(8) sin 6 a8 (39) as
, ©p
43 op+2n O+ 2n
/ p(8) cos © a0 f (10) de
Sp 6p
SN £(e) Asgigned arbitrarily| See Numerical Procedure
k5| -p'(6) = n(e) + £(e) (38) + (kk)
16 p'(0) sin @ (45) x (20)
L7 p'(Q) cos @ (k5) x (11)
48 +2n on
Zp'(e) dae ‘é?v(lﬁ) ae Must be equal to zero
49 Bptan Gptan
p'(0) sin 6 a9 4 (46) as Must be .equa.l to zero

W
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TABLE IT - OUTLINE FOR COMPUTATION OF ATRFOIL COCRDINATES - Continued

Definition Operation Remarks
19| pan Ay tan-t (zin 2] ) sin Ap x (16)
20| on Ag mh_l(ggs e ) cos Ay x (17)
21 -1 (ten © T
Fig e (o) g < (18
22 (19) - (20) +(22)
23 Vyd
— x (22)
o4 2] 23) - is the first val
¥o © (23) °1 glvensin zolumn (23)ue
25 u () (24) and curve
reading
26 o7 /)
27 n Ve (6) [(26) x (9)] /(25)
daq{e) u(e)
28 G-OT G-GT
T2 2
- 2 gin (28
it 2 sin (9_‘_?9'_1_) s (28)
= T for rounded tail
30 %_ 1) (%"l) E:Ofg: cuspeg. tall
[2 sin (9_'_29'1‘_)] (29)
31 (27) x (30)
32 log, (31)
33 sin
ef tan-1 (Eﬁ.'TE)x (10)
3k cos

ok ta'nh-l(coshai)x (1)
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TABLE IT - OUTLINE FOR COMPUTATION OF AIRFOIL COORDINATES - Continued

Definition Operation Remarke
50 ept+21 Sq+2m Must be equal to zero
p'(8) cos 6 do (47) ae
p

51 q (9) Coﬁ,jugate harmonic
function of (45)
52 £(8)/a(s) (k%) /(4)
53 _ 1(e) -(52)
TeT o
e .
sk - %% (25) x (53)

u'(e) = u(e) e

? | vt Grp) cos o | et (Gpg) x (2
56 tanh~1 (;:—z;%) sin 6 | tanh-1 c—Z-z.;%) x (10)
57 (55) - (56)
58 'S
g x(57)
59 6(radians) 6(deg) x B
60 &(radtens) ! (59)/2
R Cp - (60) + (58) |o - ;s L pud (2R 0T
e Co= 5+ 5ten (tanh k)
62 =T P ded tail
. (L- %)= (6) : - o for Zﬁ:;ed tail
63 a(e)/a(e) (51) /(%)
& p(e) (63) + (62) + (59) + & Raddens
65 cos B (8) cos (64)

33
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TABLE IT - QUTLINE FOR COMPUTATION OF ATRFOIL COCORDINATES - Concluded

Definition Operation Remarks
66 sin B(0) sin (64)
67 v5(0) (9)/(5%)
u'ZG$
68 ORI " (67) x (65)
ut(e) !
69 v,(e) (67) x (66)
O] sin g(8)
70 E-Eq o
8 (0) / (68) ae
v.(©
=/‘u?(-—e)cosB(9)d.9 o -
o
11 n-Nqp

=]
=\/‘Z?§—§;-sinﬂ(e) ae
&p .

f(@)dg
% N
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v(S)
Pressure Suction
surface surface
ST, | -S 0 +S 57,2

1 4

Figure 1. - Velocity distribution.

Downstream
velocity Complete velocity

diagram

“!Eﬁ;!”

Figure 2. — Notation for cascade flow.
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Airfoil velocity, v(S)

——— BT

0
~-l.2 ST" -.8 —-.4 0 S .8 ST’2 1.2
Airfoil arc length, S

Figure 3. — Prescribed velocity distribution on airfoil.
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Airfoil velocity potential, 9 {S)
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Figure 4. - Velocity function u(S) on airfoil and velocity
potential distribution on airfoil.




Circle veloclty, v, i6)
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Figure 5, — Velocity distribution on unlt circle.
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Circle velocity potential, ec(6)
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Figure 6. — Yeloclty-potential distribution on unit clircle.
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p(e), f(8)
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Figure 7. - Harmonic function p(8) and correction function f(e), computed for 360 points.
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p'(e) = p(8) + f(8)

41
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Figure 8, — Corrected harmonic function p'(8),

56.281 96.281 136.281

computed for 360 points.
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Modified velocity, v'(S)

1.2
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.4

"08 -04 0 04 08 102
Modified arc length, S?

Figure 9. — Modified velocity distribution on airfoil.
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Figure 12. — Harmonic function p'(8) corrected for 90 points.




Conjugate harmonic function, q{6)
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